Status of J/ψ in d+Au run8

- •200GeV
- Production P08ic
- MinBias Trigger
- •39M events, 33M in |Vz| < 50cm
 - Geometry: TPC and EMC

Chris Powell

Lawrence Berkeley Laboratory/ University of Cape Town

Outline

PID using p/E

PJ/Ψ signal and significance

PT bins

Quality of the data

Vz for all events

RefMult for accepted events

This is approximately 83% of the produced d+Au data

Event Cuts: $|Vz| < 50 \text{cm } \&\& V \neq (0,0,0)$ (33M events)

Corrupt Events:

Gene van Buren reported instances where the 1-second RICH scaler rates were incorrectly 'stuck' at values 2 or 3 times too high.

(see http://drupal.star.bnl.gov/STAR/blog-entry/genevb/2008/nov/21/cutScalerCorruption)

This can have a large impact on how TPC distortions are corrected. Working with Gene, I devised a set of cuts to remove these events (~0.6% of minBias events) on the analysis level. (see http://pdsfweb01.nersc.gov/~cpowell/dAu 2008/scalerAnalysis/2009 2 dAu08 scalers.pdf)

Quality Cuts:

Accept tracks which pass these cuts

Track distibutions after quality cuts:

EMC tower energy

There is no plan for calibration of EMC in run8 d+Au. BTOW calibration for pp data is underway.

Approx. 92% of tracks in TPC are matched to tracks in EMC

Approx. 82% of those tracks have an energy E>0

EMC energy for all accepted tracks on run day 5

Try to identify the electron peak in the p/E distribution. Removing events far from this peak can reduce background in the invariant mass signal.

The current p/E distribution for electrons in d+Au has a peak at p/E ~ 1.2

Electron Cuts:

dE/dx < 2.5 keV/cmpT > 1 GeV

Hadron Cuts:

Inσel<3 $|n\sigma\pi|>2.5$ |nσP|>2.5 |nσK|>2.5 dE/dx > 3.5 keV/cmpT > 1 GeV

After hadron background subtraction

Distributions scaled for 3.5 < p/E < 5

Attempts to improve the purity in the p/E distribution:

Excluding tracks detected in the outer rings of the EMC with $0.9 < |\eta| < 1.0$

(http://pdsfweb01.nersc.gov/~cpowell/dAu_2008/EMC/PoE_eta09_cut4_pt2.gif)

Restricting electrons to hit near the centre of the tower so that all of the energy is in the tower.

(http://pdsfweb01.nersc.gov/~cpowell/dAu_2008/EMC/TowCut/nPoE_towCut_pt2.gif)

These reduced statistics, but did not affect the shape of the distributions much

PID Analysis

Good tracks (no pT cut)

Particle Identification cuts:

PID3:
$$|nσe|<3$$
 $|nσP|>2.5$ $|nσπ|>2.5$ $|nσκ|>2.5$ $|nσκ|>2.5$ $|nσκ|>2.5$

The mass spectrum has been calculated for each cut, and the signal has been reconstructed using like sign background subtraction:

$$S = N_{+-} - 2 qrt(N_{++}N_{--})$$

The raw number of J/Psi's has been calculated from the signal spectrum by counting the number of e+e- pairs with 2.9 GeV < M_{ee} < 3.2 GeV.

The significance of the peak has also been calculated:

Significance =
$$S/\delta S$$

where
$$\delta S = sqrt(N_{++} + N_{--} + N_{+-})$$

Accepted electrons

Invariant mass with like-sign background subtraction

Only use tracks with EMC energy E>0 and p/E<2.3

pT bins using PID 10

Caution: Full statistic results include events with corrupt scalers. These events cannot be trusted, but only make up at most 0.6% of the data.

Full statistics

1.2 < pT < 2.2 GeV

Full statistics

$$S = 20 \text{ J/Psi's}$$

Significance = 4.3
 $S/B = 21$

2.2 < pT < 5 GeV

Full statistics

$$S = 15 \text{ J/Psi's}$$

Significance = 3.1
 $S/B = 3.7$

$$S = 15 \text{ J/Psi's}$$

Significance = 3.3
 $S/B = 4.2$

<u>0 – 20% Central using PID 10</u>

Require refMultFtpcEast > 12

Table summarising J/Ψ signal information

Full pT Range (83% of statistics)

PID	Central	Jpsi's	Sig	S/B	
3	0-100%	90	5.1	1.8	no p/E cut
10	0-100%	55	6.2	5.5	E>0 && p/E <2.3
10	0-20%	14	2.9	3.9	E>0 && p/E <2.3

pT bins for PID 10 (83%) (Full)

Jpsi pT	Jpsi's	Sig	S/B
pT < 1.2 GeV/c	16 (19)	3 (3.3)	3.9 (4.1)
1.2 < pT < 2.2 GeV/c	16 (20)	3.8 (4.4)	17 (21)
2.2 < pT < 5 GeV/c	15 (15)	3.3 (3.1)	4.2 (3.6)

Requiring tracks to have EMC information drastically reduces the background in the invariant mass spectrum and increases the signal to background ratio.

There should be a slight improvement of statistics with the full d+Au data set.

Summary

- •A clear J/ψ signal with a high significance has been identified using the TPC.
- Adding EMC information for particle identification improves this signal
- However, EMC has not been calibrated; the mean of the electon peak in the p/E distribution is ~ 1.2.
- Invariant mass spectrums show a clear peak in 3 pT bins.
- A peak can be identified for 0-20% central collisions.
- Low statistics impact on effective like-sign background subtraction.

To Do

- Embedding: a sample for J/ψ in d+Au has been produced,
 QA is underway
- Initial test samples indicate the line shape is much narower than the data indicates.
- The remaining 17% of the data will be included shortly
- Alternative background subtraction methods can be investigated.

Backup Slides

Estimate of improvement in statistics

Caution: Full statistic results include events with corrupt scalers...

$$S = 55$$
 J/Psi's
Significance = 6.2
S/B = 5.5

pT bins using PID 10

(No rebinning)

Caution: Full statistic results include events with corrupt scalers. These events cannot be trusted, but only make up at most 0.6% of the data.

pT < 1.2 GeV

Full statistics

1.2 < pT < 2.2 GeV

Full statistics

$$S = 20 \text{ J/Psi's}$$

Significance = 4.3
 $S/B = 21$

2.2 < pT < 5 GeV

Full statistics

$$S = 15 \text{ J/Psi's}$$

Significance = 3.1
 $S/B = 3.7$

$$S = 15 \text{ J/Psi's}$$

Significance = 3.3
 $S/B = 4.2$

pT bins using PID 10

(Different pT bins)

Invariant mass with like-sign background subtraction

Invariant mass with like-sign background subtraction

<u>0 – 20% Central using PID 10</u>

Require refMultFtpcEast > 12

